Prediction of Mine Gas Emission Rate using Support Vector Regression and Chaotic Particle Swarm Optimization Algorithm

نویسندگان

  • Qian Meng
  • Xiaoping Ma
  • Yan Zhou
چکیده

Forecasting of gas emission rate in mine is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector regression (SVR) can solve the problem with small samples, nonlinear and high dimensions. However, the precision of SVR is significantly affected by its parameter. In order to improve the mine gas emission rate accurately, an optimal selection approach of support vector regression parameters is proposed based on the chaotic particle swarm optimization algorithm (CPSO). A model based on the CPSO-SVR to predict the mine gas emission rate is established and the optimal parameters of SVR is searched by CPSO. The experimental data from a coal mine in China is used to illustrate the performance of proposed CPSO–SVR model. The results show that the proposed prediction model has better results than the artificial neural network (ANN) and traditional SVR algorithm under the circumstances of small sample. This indicates that the precision can meet the requirement of practical production and demonstrates that the CPSO is an effective approach for parameter optimization of SVR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...

متن کامل

Hybridization of Chaotic Quantum Particle Swarm Optimization with SVR in Electric Demand Forecasting

Abstract: In existing forecasting research papers support vector regression with chaotic mapping function and evolutionary algorithms have shown their advantages in terms of forecasting accuracy improvement. However, for classical particle swarm optimization (PSO) algorithms, trapping in local optima results in an earlier standstill of the particles and lost activities, thus, its core drawback ...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

Economic Dispatch of Thermal Units with Valve-point Effect using Vector Coevolving Particle Swarm Optimization Algorithm

Abstract: This paper is intended to reduce the cost of producing fuel from thermal power plants using the problem of economic distribution. This means that in order to determine the share of each unit, considering the amount of consumption and restrictions, including the ones that can be applied to the rate of increase, the prohibited operating areas and the barrier of the vapor barrier, the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013